Name Kc/Kp Multiple choice

1
<u></u>

1. (ebbing14.3)

The equilibrium expression for K_c for the system

 $CO_{2(g)} + CaO_{3(s)} \rightarrow CaCO_{3(s)}$ is

- [CaCO₃]/[CO₂][CaO]

b. [CaCO₃]/[CO₂] c. [CO₂]

2. (Ebbing 14.4)

In which of the following does the reaction go the least to completion (see the following K values)

- 10E3
- c. 10E0

Gemallest K d. 10E-3

3. (Ebbing 14.7)

Carbon disulfide and chlorine react according to the following equation:

 $CS_{2(g)} + 3Cl_2 \leftrightarrow S_2Cl_{2(g)} + CCl_{4(g)}$

When 1.00 mol of CS2 and 3.00 mol of Cl2 are placed in a 2.00L container and allowed to come to equilibrium, the mixture is found to contain 0.250mol of CCl₄. What is the amount of Cl₂ at equilibrium?

- a 2.25 mol
- b. 2.75 mol
- c. 0.75 mol

- CS291 + 3C/281 = S2C/261+CC/481
- d. .25 mol 3/1 /.00 3.00 e. .50 mol 3/5-0.25 -0.750

5. (Ebbing14.11)

Which expression correctly describes the equilibrium constant for the following reaction?

 $4NH_{3(g)} + 5O_2 \leftrightarrow 4NO_{(g)} + 6H_2O(g)$

- a. $K_c = 4[NH_3] + 5[O_2]/6[H_2O] + 4[NO] (d. K_c = [H_2O]^6[NO]^4/[NH_3]^4[O_2]^5$
- b. $Kc = 6[H_2O] + 4[NO]/4[NH_3] + 5[O_2]/e$.
- $Kc = [NH_3]^4 [O_2]^5 / [H_2O]^6 [NO]$
- c. $Kc = [H_2O][NO]/NH_3][O_2]$

7. (ebbing14.19)

Consider the reaction system

 $Br_2(g) + Cl_2(g) \leftrightarrow 2BrCl(g)$

$$K_c = \frac{[B_r C]^2}{[B_S][Cl_2]} = \frac{(0.015)^2}{(0.006)(0.0095)} = 3.947$$

At a given temperature. When the system is at equilibrium, the molar concentrations of Br₂, Cl₂ and BrCl are 0.0060M, 0.0095M, and 0.015M, respectively. The value of Kc for this system is

d. 53 e. 260

	more ants
k	8. (ebbing 14.21) For the reaction system 2.11(a) (a) 1.1 (b) 1.1 (c) K= [H][Jz] (2.20) (a) (1.5E-3)(1.5E-3)
	For the reaction system $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	Kc = 0.020 at 720K. If the initial concentrations of HI, H ₂ , and I ₂ are all 1.50E-3M at 720K, which one of the following statements is correct?
	The system is at equilibrium. The concentration of HI will increase as the system is approaching equilibrium.
	b. The concentrations of HI and I ₂ will increase as the system is approaching equilibrium. c. The concentrations of H ₂ and I ₂ will increase as the system is approaching equilibrium. c. The concentrations of H ₂ and I ₂ will increase as the system is approaching equilibrium. c. The concentrations of H ₂ and I ₂ will increase as the system is approaching equilibrium.
<u> </u>	(9) (ebbing 14.22) For the reaction $2H_2S(g) \Leftrightarrow 2H_2(g) + S_2(g)$ $I 0.01 1.0 1.5$ $I 0.01 1.0 1.5$ $I 0.01 1.0 1.5$
	at a certain temperature Kc equals 4500. What will happen when 0.010 mol of $H_2S(g)$, 1.0 mol of H_2 and 1.5 mol of H_2 are added to a 2.0 L container and the system is brought to the temperature at which H_2 which H_3 are added to a H_4 mol of H_2 and H_3 are added to a H_4 mol of H_2 and H_3 are added to a H_4 mol of H_2 and H_3 are added to a H_4 mol of H_4 and H_4 are added to a H_4 mol of H_4 and H_4 mol of H_4 and H_4 mol of H_4 mol of H_4 and H_4 mol of H_4 and H_4 mol of H_4 and H_4 mol of H_4 mol
	More S ₂ will be formed than H ₂ . b. More H ₂ S will be formed. c. The amount of H ₂ formed will be half the amount of S ₂ .
	More H ₂ will be formed than S ₂
ļ	 10. (ebbing14.23) A 1.00 mol sample of HI is placed in a 1-L vessel at 460C, and the reaction system is allowed to come to equilibrium. The HI partially decomposes, forming 0.11 mol H₂ and 0.11 mol I₂. What is the equilibrium constant for the reaction? H₂(g) + I₂(g) ⇔ 2HI(g)
	a. 0.020 b. 7.1 c. 81
	11. (ebbing 14.25) Consider the equilibrium $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$ at a certain temperature. An equilibrium mixture in an 8.00L vessel contains .800 mol N_2 , and 1.20 mol H_2 . What is the value of K_c ?
	a. 1.85 b. 29.6 c. 37.4 d. 75.8 e. 119 e. 119 5
	8=0.1M NE 0.1 0.12
	1.2 = 0.12

0

14.

15.

 $4H_{2(g)} + CS_{2(g)} \Leftrightarrow CH_{4(g)} + 2H_2S_{(g)}$

The system reaches equilibrium according to the equation above. A mixture of 2.5 mol H_2 , 1.50 mol CS_2 , 1.50 mol CH_4 and 2.00mol H_2S is placed in a 5L reaction vessel. When equilibrium is achieved, the concentration of CH_4 has become 0.25M.

Changes in concentration occur as this system approaches equilibrium. Which expression gives the best comparison of the changes in those concentration shown in the ratio below?

What is the change in the number of moles of $H_2S(g)$ present as the system moves from its original state to the equilibrium described?

When equilibrium is achieved, the concentration of CH₄ has become 0.25M.

When equilibrium is achieved, the concentration of CH₄ has become 0.25M.

What is the concentration in moles per liter of H₂ at equilibrium?

